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Mitochondrial Medicine: Pharmacological targeting
of mitochondria in disease
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Mitochondria play a central role in cell life and death and are known to be important in a wide range of diseases including the
cancer, diabetes, cardiovascular disease, and the age-related neurodegenerative diseases. The unique structural and functional
characteristics of mitochondria enable the selective targeting of drugs designed to modulate the function of this organelle for
therapeutic gain. This review discusses mitochondrial drug targeting strategies and a variety of novel mitochondrial drug
targets including the electron transport chain, mitochondrial permeability transition, Bcl-2 family proteins and mitochondrial
DNA. Mitochondrial drug-targeting strategies will open up avenues for manipulating mitochondrial functions and allow for
selective protection or eradication of cells for therapeutic gain in a variety of diseases.
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Abbreviations: DmHþ , mitochondrial proton gradient; Dcm, mitochondrial membrane potential; AD, Alzheimer’s disease; ALS,
amytrophic lateral sclerosis; ANT, adenine nucleotide translocator; bc1, complex III; BR, benzodiazepine
receptor; CD437, 6[3-adamantyl-4-hydroxyphenyl]-2-naphthalene carboxylic acid; CK, creatine kinase;
complex I, NADH dehydrogenase; CsA, cyclosporin A; CyP-D, cyclophilin-D; DLC, delocalized lipophilic
cation; DQAsome, dequalinium liposome; Drp-1, dynamin-related protein; ETC, electron transport chain;
F0F1ATPase, ATP synthase; FRDA, Friedreichs ataxia; GFP, green fluorescent protein; HD, Huntington’s disease;
hFis1, mitochondrial fission protein; HK, hexokinase; IR, ischaemia and reperfusion; LND, lonidamine; MI,
myocardial infarction; MitoPBN, triphenyl-phosphonium cation (TPPþ )-linked phenyl tert-butylnitrone;
MitoPeroxidase, TPPþ -linked peroxidase (ebselen); MitoQ, TPPþ -linked coenzyme Q; MnSOD, manganese
superoxide dismutase; MPT, mitochondrial permeability transition; MSP, mitochondria signal peptide; mtDNA,
mitochondrial DNA; O2

K�, superoxide anion; OPA1, optic atrophy protein; OX-PHOS, oxidative phosphorylation;
PD, Parkinson’s disease; Rh123, rhodamine 123; ROS, reactive oxygen species; SOD1, superoxide dismutase;
SS peptides, Szeto–Schiller peptides; SS01, tyrosine-linked peptide; SS31, dimethyltyrosine-linked peptide; THG,
thapsigargin; UCP, uncoupling protein; VDAC, voltage-dependent anion channel

Introduction

After the landmark discovery of the regulation of mitochon-

drial energy production by chemiosmosis (Mitchell and

Moyle, 1967) many scientists considered the role and

function of the mitochondrion solved. Mitochondria again

took the spotlight in the 1980s, with the breakthrough

that certain diseases are caused by mutations in mitochon-

drial DNA (mtDNA) (Wallace et al., 1988) as well as by the

seminal findings of Liu et al. (1996)that mitochondria are

key regulators of programmed cell death by apoptosis.

These discoveries rekindled scientific interest in the

mitochondrion, and in its potential role in a variety of

diseases including cancer, cardiovascular disease, diabetes

and neurodegenerative diseases all of which have a signifi-

cant mitochondrial component. Advances in mitochondrial

research and in medical technology have been a major

impetus behind the desire to design and develop drugs

specifically targeting mitochondria for therapeutic gain. The

main focus of this review is to discuss mitochondrial drug

targeting strategies and novel mitochondrial targets that

will, in the future, promote the development of mitochon-

drial-directed therapeutics. Targeting of biologically active

molecules to the mitochondria of living cells will open up

avenues for manipulating mitochondrial functions and

allow for selective protection or eradication of cells for

therapeutic gain in a variety of diseases.
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Mitochondrial drug targeting rationale

The rationale for targeting drugs to mitochondria for

therapeutic gain lies in the fact that mitochondria play a

key role in the regulation of energy metabolism, reactive

oxygen species (ROS) production and apoptosis. Therefore,

the specific delivery of drugs to mitochondria may provide

the foundation to treat a variety of diseases wherein these

functions are deregulated. The potential therapeutic applica-

tions of mitochondrial targeting include: (1) the delivery of

antioxidants to mitochondria to prevent oxidative damage

associated with the neurodegenerative diseases, ischaemia

and reperfusion (IR) tissue injury and diabetes; (2) the

targeting of toxic drugs or Bcl-2 proteins to mitochondria

to trigger apoptosis in cancer therapy; (3) the delivery of

drugs to mitochondria to inhibit the mitochondrial perme-

ability transition (MPT) in IR-related tissue injury, for

example, in heart attack and stroke; and (4) the targeting

of drugs to either uncouple the electron transport chain

(ETC), or activate the uncoupling proteins (UCPs), in obesity

and diabetes (Table 1).

The benefits of targeting drugs to specific
subcellular sites

Systemic drug administration is problematic because of the

need to use a high concentration of drug to achieve an

effective local concentration at the disease site because this

often results in accompanying nonspecific toxic side effects.

The idea of targeting drugs to the specific site of the disease

was recognized by Ehrlich in the early 1900s whose ‘Magic

Bullet’ approach remains the goal of pharmaceutical scien-

tists worldwide. A variety of methods have been developed

to achieve the selective targeting of drugs in vivo including

the use of soluble polymer carrier systems, micelles and

liposome-based strategies (Torchilin, 2000). While at the

subcellular level, potential drug targets include the nucleus

for gene therapy, mitochondria for proapoptotic cancer

therapies and replacement enzyme therapies for the lysoso-

mal storage diseases (Torchilin, 2006). For example, Gaucher

disease is a lipid storage disease that has been successfully

treated by replacing the lysosomal enzyme glucocerebrosi-

dase and proapoptotic Bcl-2 family proteins have been

Table 1 Pharmacological targeting of mitochondria in disease

Molecule targeted Target Desired effect Potential disease treated

MitoQ Dcm Antioxidanta Neurodegenerative disease,
MitoPBN Dcm Antioxidanta IR injury and diabetes
MitoPeroxidase Dcm Antioxidanta

GSH-choline ester Dcm Antioxidanta

NAC-choline ester Dcm Antioxidanta

SS31 MSP inner membrane Antioxidanta

SS01 MSP inner membrane Antioxidanta

mtDNA? DQAsome-protein import pathway? Replacement for mutant mtDNA mtDNA-associated diseases
Cyanine dyes – MKT-077 Dcm Apoptosisb Photochemotherapy
Rhodamine 123 Dcm Apoptosisb Cancer therapy
DLC-AA1 Dcm Apoptosisb

Paclitaxel DQAsome-protein import pathway Apoptosisb

Drp-1, hFis1, OPA1 Apoptosisb

Ciprofloxacin mtDNA-ETC Apoptosisb

Diamide-GSH depletion Redox-Bcl-2 Apoptosisb

Antisense oligonucleotides A1-Bcl-XL Bcl-2 Apoptosisb

BK11195 Benzodiazepine receptor-Bcl-2 Apoptosisb

SMAC-DIABLO mimetic Inhibit XIAP Apoptosisb

BH3 mimetic (SAHB) Activate Bax Apoptosisb

Arsenite Redox-MPT Apoptosisb

LND ETC Apoptosisb

Betulinic acid MPT Apoptosisb

CD437 MPT Apoptosisb

Mastoparan Dcm Apoptosisb

CyP-D overexpression? MPT? Necrosis/apoptosis
CsA CyP-D-MPT k Necrosis/apoptosisc IR injury in heart and brain attack
Ruthenium analogues Ca2þ uniporter k Necrosis/apoptosisc

4-methyl-val-CsA CyP-D-MPT k Necrosis/apoptosisc

Sangliferin MPT k Necrosis/apoptosisc

Ro 68–3400 MPT k Necrosis/apoptosisc

UCP activators UCP1 DmHþ to block ATP and ROSd Diabetes/obesity
MnSOD Matrix Reduce ROSd

Abbreviations: CsA, cyclosporin A; DQAsome, dequalinium liposome; ETC, electron transport chain; IR, ischaemia and reperfusion; LND, lonidamine; MnSOD,

manganese superoxide dismutase; MPT, mitochondrial permeability transition; MSP, mitochondria signal peptide; mtDNA, mitochondrial DNA; NAC, N-acetyl-

cysteine; ROS, reactive oxygen species; UCP, uncoupling protein; Dcm, mitochondrial membrane potential; XIAP, inhibitor of apoptosis protein.

Table shows a variety of molecules that have been targeted to mitochondria for therapeutic gain and their putative mitochondrial targets. It also includes the

desired effects of the drug targeting and the potential diseases in which these strategies could be applied. These include: (1) antioxidant effects for treatment of

neurodegenerative disease, IR injury and diabetesa; (2) induction of apoptosis for cancer therapyb; (3) inhibition of MPT-related cell death to prevent IR-mediated

tissue injury in brain and heart attackc; and (4) inhibition of the DmHþ by activation of UCP to block ATP production or ROS increase in obesity and diabetes,

respectivelyd (see main text for detailed explanation).

Pharmacological targeting of mitochondria
JS Armstrong 1155

British Journal of Pharmacology (2007) 151 1154–1165



successfully targeted to the mitochondrion to induce

apoptosis in cancer therapy (Denicourt and Dowdy, 2004).

It is also apparent that a number of other diseases, with a

mitochondrial component, including the neurodegenerative

diseases, IR tissue injury and diabetes, could offer similar

opportunities for mitochondrial drug therapy. However,

there has been a notable lack of progress in the development

of mitochondria-specific drug delivery systems possibly due

to a number of reasons including the notion that drugs

targeted to the cell will eventually reach the mitochondrion

by random interaction with subcellular components and also

because important structural and functional knowledge of a

variety of potential mitochondrial drug targets is lacking, for

example, only about a third of the putative mitochondrial

inner membrane ion transporters has been allocated a

function. This is exemplified by the MPT, a major player in

cell death, whose structure and mitochondrial location

remains unknown after approximately 30 years of investiga-

tion (Haworth and Hunter, 1979). However, new ideas on

mitochondrial targeting will become more important as

scientific advances are made in mitochondrial structural

biology, biochemistry and genetics which will identify new

targets for therapeutic intervention. For example, the recent

application of high-voltage electron tomography to study

mitochondrial structure (Frey and Mannella, 2000) is

providing important new information on the role of

mitochondrial fission and fusion proteins in apoptotic cell

death (Cipolat et al., 2006; Frezza et al., 2006).

Mitochondriotropic delivery devices

Delocalized lipophilic cations

Delocalized lipophilic cations (DLCs) have been used as

carriers to deliver a variety of biologically active molecules to

mitochondria because they target the mitochondrial inner

membrane and accumulate in the matrix as a function of

mitochondrial membrane potential (Dcm). In this light, a

variety of anticancer drugs strategies have been proposed

based on the observation that DLC selectively targets cancer

cells due to their higher Dcm compared to normal cells

(Chen, 1988). Thus, rhodamine 123 (Rh123) has been used

to direct a variety of anticancer drugs selectively to lung

carcinoma cells (Teicher et al., 1987). In contrast to targeting

apoptosis, DLCs are also being successfully used to deliver

antioxidants to the mitochondria of cells to prevent cell

death. For example, MitoQ, a triphenyl-phosphonium cation

(TPPþ )-linked derivative, has been developed as mitochon-

driotropic antioxidant to directly target mitochondria to the

site of ROS production in the cell while also circumventing

poor solubility problems associated with the natural anti-

oxidant coenzyme Q (CoQ10). MitoQ has been shown to

concentrate several 100-fold within mitochondria and to be

a significantly more potent antioxidant than the nontar-

geted CoQ10 analogue decylubiquinone (Jauslin et al., 2003).

The efficacy of DLC-linked mitochondrial-targeted antiox-

idants has recently been shown in a study where MitoQ was

found to be potently protective in an ex vivo model of IR

injury (Adlam et al., 2005) and by the fact that it is currently

undergoing clinical trials for Parkinson’s disease (PD). Other

antioxidant compounds that have been linked to DLC

include the spin trap phenyl tert-butylnitrone (PBN) produ-

cing MitoPBN which was recently shown to protect animal

models against IR tissue injury and neurodegenerative

disease (Saito et al., 1998; Maples et al., 2004). DLC-

conjugated compounds also include MitoPeroxidase, a

derivative of ebselen, which possesses GSH peroxidase

(Filipovska et al., 2005). In contrast to increasing GSH-

peroxidase activity to break down mitochondrial peroxides,

an alternative idea has been to specifically increase the

mitochondrial GSH levels with the development of the

mitochondria-targeted GSH-choline ester and N-acetyl-

cysteine-choline ester (Sheu et al., 2006) (some of these

targeting ideas are illustrated in Figure 1a). These com-

pounds, although apparently effective as antioxidants in a

variety of cell-based and animal studies suffer from the fact

that at high concentrations they can depolarize the Dcm and

lead to cell death. Thus, the use of DLC-linked antioxidants

as cytoprotective agents must be accompanied by thorough

studies of potential concentration-dependent side effects.

Szeto–Schiller peptides as mitochondriotropic agents

A novel class of cell-permeable antioxidant peptides that

selectively partition into the inner mitochondrial membrane

independent of the Dcm has recently been reported (Szeto,

2006a). These peptides, known as Szeto–Schiller (SS) pep-

tides, possess a structurally similar aromatic–cationic motif

in which the aromatic group, either tyrosine (SS01) or a

dimethyltyrosine (SS31) group, alternates with a basic amino

acid. SS peptides are rapidly taken up into cells, reach a

steady-state concentration in minutes, and have a sequence

motif that targets them to mitochondria in an energy-

independent and nonsaturable manner (Szeto, 2006a) (illu-

strated in Figure 1b). Incubation of isolated mitochondria

with [3H]SS-02 or [3H]SS-31 has shown that SS peptides are

taken up and concentrated 1000–5000-fold in mitochondria

and even though they are cationic, mitochondrial fractiona-

tion studies have shown that they are localized to the inner

mitochondrial membrane and not the matrix (Zhao et al.,

2004). Because SS peptides are not delivered into the matrix,

their uptake is not self-limiting, and they do not cause

mitochondrial depolarization even at high concentrations

up to 1 mM, which is a potential benefit over DLC-linked

antioxidants. Studies with isolated mitochondrial prepara-

tions and cell cultures have shown that SS peptides scavenge

and reduce mitochondrial ROS production and block the

MPT thereby inhibiting oxidative stress-induced apoptosis

and necrosis. SS peptides are nontoxic and have been shown

to protect against IR-mediated tissue injury (Cho et al., 2007)

and neurodegenerative disease in animal models (Szeto,

2006b). In theory, SS peptides could be used as delivery

devices for a variety of drugs including apoptosis activating

drugs. Thus a variety of mitochondrial-targeted antioxidant

strategies are currently being developed and it will be

interesting to see how these approaches compare in vivo

with nontargeted antioxidants. In addition, these

approaches will provide useful information on cell-specific

sites of toxic ROS generation during different disease states.

Pharmacological targeting of mitochondria
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Colloidal drug delivery systems dequalinium liposomes

Liposomes, and other vesicular carrier systems, have been

used for a number of years to deliver drugs to cells.

Liposomal drug delivery systems offer specific advantages

over non-encapsulated drug systems including: (1) improved

drug release properties; (2) the ability to target cells and

avoid problems associated with systemic toxicity; and (3) the

ability to include several drugs into one delivery system

(Minko et al., 2006). This method of drug targeting is

currently being expanded to the subcellular level with the

development of phospholipid and non-phospholipid-based

mitochondriotropic drug carrier systems (Weissig et al., 2004,

2006; Boddapati et al., 2005). For example, dequalinium is a

dicationic mitochondriotropic compound that self-assem-

bles and forms vesicle-like aggregates called dequalinium

liposomes (DQAsomes). These vesicles have been shown to

be actively taken up by endocytosis and to fuse with the

mitochondrial outer membrane allowing mitochondria

signal peptide (MSP)-tagged cargo to enter the matrix via

the protein import system (Weissig et al., 2004). This delivery

system has been successfully shown to deliver paclitaxel to

human colon carcinoma cells and activate apoptosis (Weissig

et al., 2004) (this targeting idea is illustrated in Figure 1c).

There are a number of potential benefits of DQAsome-

mediated delivery systems. First, the therapeutic window for

many drugs is relatively narrow and direct mitochondrial

targeting should allow the delivery of a more precise drug

dose to mitochondria while avoiding cellular toxicity.

Second, the ability to hide a drug inside the vesicle should

avoid the problems of potential drug resistance mediated by

the P-glycoprotein multidrug efflux pump. Third, mitochon-

drial encapsulation of many drugs will avoid the need to

prepare them as oil-based emulsions, for example, paclitaxel

is administered as an emulsion of ‘Cremophor EL’ which is

itself toxic (Seligson et al., 2001). Fourth, because cancer cells

possess an increased Dcm compared to normal cells, vesicular

mitochondriotropic delivery systems containing DLC-linked

toxic drugs could selectively deliver drug to the mitochon-

dria of tumour cells rather than normal cells. Fifth,

DQAsome delivery systems could be used to transport drugs

to the mitochondrial matrix that are otherwise precluded

from use due to their nonspecific actions in the cytosol such

as cyclosporin A (CsA), an inhibitor of the MPT.

The mitochondrial protein import machinery

An alternative mitochondrial targeting strategy that involves

the delivery of macromolecules to mitochondria utilizing

the mitochondrial protein import machinery has also been

proposed. The MSP, an N-terminal-specific amino-acid

sequence, can be linked to other nonmitochondrial proteins

to create a chimeric protein that is taken up in to the

mitochondrial matrix via the protein import pathway (this

targeting idea is illustrated in Figure 1d). For example, a MSP

has been linked to green fluorescent protein which has

allowed the visualization of mitochondria in living cells

(Murphy, 1997). The MSP has also been linked to aequorin,

a calcium-sensitive protein, to determine mitochondrial

Figure 1 Title: pharmacological targeting of mitochondria in disease. (a) Mitochondria accumulate delocalized lipophilic cations (DLCs)
because of the large membrane potential across their inner membrane (negative on the inside). DLCs can be linked to a variety of bioactive
compounds including derivatives of antioxidants such as coenzyme Q and vitamin E yielding MitoQ and MitoVit E, respectively. Some DLCs are
selectively toxic to cancer cells due to their increased Dcm including Rh123 or AA1, whereas others such as the cyanine dye MKT-077 can be
photoexited to yield toxic species. (b) Szeto–Schiller (SS) peptides selectively partition into the inner mitochondrial membrane independent of
the Dcm and possess intrinsic antioxidant and cytoprotective properties. They contain an aromatic–cationic sequence motif in which the
aromatic group, either tyrosine (SS01) or a dimethyltyrosine group (SS31), alternates with a basic amino acid. (c) Dequalinium is a dicationic
mitochondriotropic compound that self-assembles and forms vesicle-like aggregates called DQAsomes. These vesicles have been shown to be
actively taken up by endocytosis and to fuse with the mitochondrial outer membrane allowing mitochondria signal peptide (MSP)-tagged
cargo to enter the matrix via the protein import system. The anticancer drug paclitaxel has been successfully delivered to mitochondria using
this approach. (d) Mitochondria can be targeted by linking a MSP to a nonmitochondrial protein to create a chimeric protein that is taken up in
to the mitochondrial matrix via the protein import pathway. This strategy can target drugs, proteins and covalently linked MSP-DNA to
mitochondria.
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calcium levels in cells (Brini et al., 1995). Cytosolic enzymes

such as dihydrofolate reductase and cytochrome c oxidase

have also been successfully targeted to mitochondria by

linking them to a MSP. However, it has been noted that the

proteins conformation may significantly alter the efficiency

of the protein import process (Verner and Lemire, 1989). The

mitochondrial protein import pathway has also being used

for mitochondrial gene replacement and, therefore, could

potentially be used to correct a mutant mitochondrial

genome similar to classical gene replacement therapies that

have replaced a corrected copy of a defective nuclear gene.

For example, the MSP for ornithine transcarbamylase was

linked to a DNA molecule and the chimera was found to be

efficiently translocated into the matrix of mitochondria

(Seibel et al., 1995). Thus, the targeting of covalently linked

MSP-DNA molecules to mitochondria via the protein import

pathway may open up new ways for mtDNA delivery

strategies.

Caveats concerning mitochondrial drug targeting

First, although studies have suggested that mitochondrial

targeting ideas are effective in animal disease models, many

of these investigations have been relatively short-term and

currently there is very little data on the long-term side effects

of using these compounds in animals. Another problem is

the current lack of efficient methods to regulate the delivery

of these drugs to the tissue of interest. For example, where

MitoQ was shown to be protective in an ex vivo model of

cardiac IR injury (Adlam et al., 2005), MitoVit E failed to

protect rat neurons from acute hypoxia–ischaemia injury

and at high concentration was neurotoxic (Covey et al.,

2006). One possible idea to circumvent this problem might

be to couple the mitochondrial drug to a carrier molecule to

create an inactive prodrug that could be activated by a

tissue-specific product, such as an enzyme, to release

the mitochondrial drug for targeting. An example of this

‘magic bullet’ approach, has recently been shown with the

SERCA-ATPase inhibitor thapsigargin (THG), which indir-

ectly targets mitochondria through Bax activation and

calcium signalling (Zhang and Armstrong, 2007). THG was

linked to a peptide to create an inactive prodrug that

was activated by the serine protease prostate-specific

antigen specifically produced by prostate cancer cells

(Denmeade and Isaacs, 2005).

Mitochondrial drug targets

Proteins of the mitochondrial outer membrane

The mitochondrial outer membrane encloses the entire

organelle and contains porins or voltage-dependent anion

channels (VDACs), which are small pore-forming proteins

found in all eukaryotic cells. VDACs regulate the flux of

metabolites between the cytosol and the mitochondrion and

are also involved in the regulation of apoptosis by their

interaction with proteins of the Bcl-2 family (Shimizu et al.,

1999). In addition to the important role of VDAC regulating

apoptosis, this protein channel is also a component of the

MPT and is, therefore, a target for MPT modulation in

diseases associated with IR injury such as heart attack and

stroke (Crompton et al., 1987; Crompton, 1999; Armstrong,

2006). Recently, new potential apoptotic drug targets have

been identified in the mitochondrial outer membrane that

are also involved in the regulation of mitochondrial

membrane dynamics including the dynamin-related protein

(Drp-1) and the mitochondrial fission protein (hFis1) (Jagasia

et al., 2005; Youle and Karbowski, 2005). Conversely, the

proapoptotic proteins Bax and Bak have been shown to be

involved in normal membrane dynamics processes including

the regulated fusion of mitochondria illustrating that these

proteins also appear to possess a dual function (Karbowski

et al., 2006).

Proteins of the mitochondrial inner membrane and the ETC

The mitochondrial inner membrane contains the proteins

of the ETC that regulate oxidative phosphorylation

(OX-PHOS), transport metabolites between the mitochon-

drial matrix and the cytosol, and import nuclear-encoded

proteins into the mitochondrion. The inner membrane has a

high cm, is rich in the lipid cardiolipin, and is compartmen-

talized into pleomorphic structures known as cristae. In

addition to regulating ATP production, the ETC is an

important source of mitochondrial ROS production that

occurs due to the ‘leakage’ of electrons on to molecular

oxygen. The principal mitochondrial ROS include the

superoxide anion (O2
K�) and hydrogen peroxide which are

continuously generated as byproducts of normal aerobic

metabolism (Chance et al., 1979). Mitochondrial ROS are

detoxified by the cooperative action of the matrix enzyme

manganese superoxide dismutase (MnSOD) and mitochon-

drial GSH-dependent peroxidase that normally ensure that

the ROS level is nontoxic. However, when ROS production

exceeds the capacity of the cell’s antioxidant defenses, the

result is ‘oxidative stress’ which can cause mitochondrial

damage and lead to cell death. The ETC sites and mechan-

isms involved in mitochondrial ROS production appear to

vary under different conditions, but respiratory complex I,

known as NADH dehydrogenase, generates significant levels

of ROS, especially during reverse electron transport (Lambert

and Brand, 2004), and is an important ETC target for

antioxidant therapies in PD (Panov et al., 2005). Complex

II, also known as succinate dehydrogenase, has been shown

to generate ROS (Guo and Lemire, 2003), which appear to be

involved in the regulation of glucose-induced molecular

signalling in the diabetic endothelium suggesting that

modulation of this site may be useful in preventing the

long-term microvascular complications associated with

diabetes (Nishikawa et al., 2000). On the other hand,

complex III (bc1) appears to have a variety of functions that

make it a target for therapeutic gain including: (1) bc1 is a key

site of ROS production in isolated mitochondria (Muller

et al., 2002); (2) bc1 regulates the MPT and cell death by

controlling mitochondrial calcium influx (Zhang and Arm-

strong, unpublished data); (3) bc1 acts an oxygen sensor for

hypoxia regulating the transcription factor HIF1a (Guzy

et al., 2005). Another, potential target for cancer therapy is

the ATP synthase (F0F1ATPase) because its inhibition would

be expected to increase the cm and facilitate the increased
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accumulation of DLC-linked cancer drugs while also deplet-

ing the cells energy supplies. Other important target proteins

of the mitochondrial inner membrane include the UCP

which, when activated, dissipate the proton gradient (DmHþ )

without contributing to ATP synthesis. In addition to the

role of the Drp-1 and hFis1 in apoptosis, mitochondrial

dynamics proteins residing in the mitochondrial inner

membrane also play an important role in regulating

apoptosis including the dominant in optic atrophy protein

(OPA1), a profusion GTPase, and the presenilin-associated

rhomboid-like protease (Cipolat et al., 2006; Frezza et al.,

2006). OPA1 has recently been identified as a regulator of

cytochrome c release by controlling the remodelling of

cristae junctions (CJs), a function that has been shown to be

independent of its physiological role as a mitochondrial

shaping protein (Frezza et al., 2006). Recent work from our

laboratory has indicated that OPA1-mediated CJ remodelling

is regulated by the MPT (Zhang and Armstrong, unpublished

data). Thus, membrane dynamics proteins of the mitochon-

drial inner membrane are also intimately involved in

apoptotic regulation and represent potential new targets

for therapeutic intervention.

Protein targets involving both membranes

The MPT is a ‘putative’ polyprotein structure spanning both

mitochondrial membranes and formed by the specific

interaction between the adenine nucleotide translocator

(ANT) (Woodfield et al., 1998), VDAC (Crompton et al.,

1998) and the matrix protein cyclophilin-D (CyP-D), a

peptidylprolyl cis–trans isomerase (Crompton et al., 1998;

Halestrap et al., 1998; Woodfield et al., 1998). Two different

models indicating how these proteins regulate the MPT have

been proposed. First, increased calcium levels and redox

stress have been shown to cause a CyP-D-dependent catalytic

(peptidyl prolyl-isomerase; PPIase) change in the conforma-

tion of the ANT converting it to a nonspecific pore (Halestrap

and Davidson, 1990; Halestrap et al., 1997, 2004). Second,

CyP-D has been shown to bind to complexes of ANT and

VDAC independent of its PPIase activity at mitochondrial

‘contact sites’ between the outer and inner membranes

suggesting that VDAC-ANT and CyP-D complexes are normal

structural components of the contact site which are

deformed into the MPT by calcium and redox stress

(Crompton et al., 1998, 2002; Crompton, 2000). Other

proteins associated with the contact site also appear to be

important regulators of the MPT including hexokinase,

creatine kinase (CK) (Kottke et al., 1988) and the benzodia-

zepine receptor (BR) (McEnery et al., 1992; Beutner et al.,

1998). This suggests that the MPT may be part of a

‘multifunctional reaction center’ involved in the regulation

of a variety of normal cell functions including energy

metabolism (Crompton, 1999). Over the years, this multiple

protein model of the MPT has become widely accepted

(Green and Reed, 1998) although genetic studies have shown

that both the ANT and CyP-D are simply regulators of the

MPT rather than its structural components (Kokoszka et al.,

2004; Baines et al., 2005; Basso et al., 2005; Nakagawa et al.,

2005; Bernardi et al., 2006). However, although the mole-

cular structure of the MPT pore remains unknown, it is

known to play an important role in necrosis associated with

IR injury and may be important in the regulation of certain

forms of apoptosis, especially that associated with increased

cellular calcium levels, for example, during endoplasmic

reticulum (ER) stress (Zhang and Armstrong, 2007). Thus, the

MPT represents a key mitochondrial target for therapeutic

intervention either to activate it to induce apoptosis for

cancer therapy or inhibit it to protect against IR-related

tissue during heart attack and stroke.

Mitochondrial DNA

The mitochondrial matrix is the space enclosed by the cristae

membrane and contains a soup of metabolic enzymes,

mitochondrial ribosomes and specialized transfer RNAs as

well as several copies of circular nonchromosomal mtDNA.

mtDNA codes for 13 subunits of enzyme complexes of the

ETC including seven of NADH-Q reductase, one of cyto-

chrome c reductase, three of cytochrome c oxidase, and two

of F0F1ATPase (Attardi and Schatz, 1988). Mitochondrial

function depends on proteins that are encoded by both

nuclear DNA and mtDNA, indicating that mtDNA represents

a potential target for therapeutic gain. For example, it may

be possible to replace a defective mtDNA sequence to replace

a faulty mitochondrial gene and thereby correct certain

mtDNA-associated diseases. The protein import pathway has

previously been used to direct the mitochondrial import of

chimeric proteins to mitochondria and could also be used to

direct the appropriate mtDNA sequences to mitochondria to

correct for the defective function of a specific protein

(Horwich et al., 1985). Patients with mtDNA diseases often

have both wild-type and mutant mtDNA molecules and

selectively blocking the replication of the mutant mtDNA to

allow repopulation of the cell with wild-type DNA has also

been suggested as a potential treatment strategy (Taylor et al.,

1997). In contrast to improving mitochondrial function, the

selective depletion of mtDNA could also be used to block

OX-PHOS and induce cell death by ATP depletion for cancer

therapy. For example, a variety of chemical agents are

available that cause selective depletion of mtDNA in

mammalian cells including ethidium bromide (Chua et al.,

2005) and ciprofloxacin (Lawrence et al., 1996). Other

mitochondrial targeting ideas include proteins of the

mitochondrial matrix such as those regulating metabolic

pathways including the citric acid cycle enzymes such as

aconitase (Juang, 2004) and the mitochondrial NADH

shuttle (Eto et al., 1999). One key matrix targets is the

protein CyP-D which transduces calcium death signals via

the MPT (Schneider, 2005). The targeted overexpression of

CyP-D in cancer therapy or its selective inhibition using

interference RNA strategies during IR-related injury could be

potentially used for therapeutic gain.

Mitochondrial targeting in disease

Mitochondrial targeting in neurodegenerative disease

Age-related neurodegenerative diseases such as PD,

Alzheimer’s disease (AD), amytrophic lateral sclerosis

(ALS), Huntington’s disease (HD) and Friedreichs ataxia

(FRDA) are multifactorial in nature and involve genetic,
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environmental and endogenous factors. These diseases are

commonly associated with mutations in mtDNA, impaired

bioenergetics, increased ROS production and abnormal

protein dynamics including the mitochondrial accumula-

tion of disease-specific proteins such as amyloid-b in AD,

a-synuclein and parkin in PD, mutant superoxide dismutase

(SOD1) in ALS, Huntingtin in HD and Frataxin in FRDA (Lin

and Beal, 2006). Although the exact cause of these diseases is

unknown, the interplay of each of these factors is considered

to contribute to the premature death of neurons and the

progressive manifestation of clinical disease. Some neurode-

generative diseases are clearly associated with increased

oxidative stress. For example, in AD increased ROS have

been shown to precede the involvement of other changes

such as senile plaque formation and increase formation of

amyloid-b (Nunomura et al., 2001; Pratico et al., 2001). In

other diseases, there is also a clear association between

increased oxidative stress and disease pathology. For exam-

ple, in PD the accumulation of a-synuclein in cultured

human dopaminergic neurons has been shown to induce

apoptosis mediated by increased ROS production (Xu et al.,

2002). Also, while normal ‘parkin’ may limit ROS produc-

tion, the mutant protein may increase ROS levels and induce

apoptosis of dopaminergic neurons (Jiang et al., 2006). The

overexpression of mutant SOD1 in ALS impairs ETC func-

tion, increases ROS production and decreases mitochondrial

calcium loading which may cause the death of motor

neurons via calcium-mediated excitotoxicity and apoptosis

(Manfredi and Xu, 2005; Perry et al., 2007). In HD transgenic

mice ROS have been suggested to play an active role on

the onset and progression of the neurological phenotype

(Perez-Severiano et al., 2004), whereas in FRDA, levels of

frataxin, a mitochondrial iron chaperone, are reduced

increasing mitochondrial iron levels, ETC dysfunction and

oxidative stress (Pandolfo, 2006). Thus, it is clear that

increased ROS production and apoptosis of neurons are

cardinal features of the major neurodegenerative diseases

and, as such, targeting of mitochondrial-specific antiox-

idants together with the use of specific anti-apoptotic drugs

represents a strategy to prevent or delay disease progression.

Mitochondrial targeting in IR injury

Heart attack or myocardial infarction (MI) often results from

coronary artery occlusion and is a predominant form of

mortality. The survival of patients suffering from MI directly

correlates with the extent of cardiomyocyte cell death and it

is necessary to rapidly restore blood flow to preserve the

function of the ischaemic myocardium. However, restora-

tion of blood flow to the ischaemic tissue further damages

the heart leading to arrhythmias, enzyme release and cell

death by a complex process known as IR injury. IR injury

involves the interplay of a variety of factors including:

(1) the development of cardiomyocyte hypercontracture;

(2) the generation of ROS; and (3) activation of the MPT, all

of which contribute to cardiomyocyte cell death (Piper et al.,

2004). Cardiac hypercontracture, that is, a shortening and

stiffening of the myocardium, occurs when mitochondrial

ATP production recovers during the reperfusion stage if IR

injury and spreads between ischaemic cells via gap junctions

to promote lethal cell injury. Strategies employed to control

hypercontracture include the modulation of calcium levels,

ROS production and the restoration of mitochondrial energy

production (Kim et al., 2006). A role for ROS during IR-tissue

injury is indicated by the observation that a variety of

antioxidant strategies have been shown to reduce cardio-

myocyte cell death (Ganote et al., 1982; Jolly et al., 1984;

Zweier et al., 1987; Ambrosio et al., 1991). During IR

mitochondrial ROS increase, during the ischaemic period

as well as during the early reperfusion phase and the

initiating ROS, signal can be amplified by ROS-induced

ROS release leading to significant oxidative stress (Zorov

et al., 2000). The site(s) of ROS formation during IR have

been shown to involve the ETC during the ischaemic phase,

but not during the reperfusion phase, because ROS produc-

tion generated during reperfusion was not prevented by

inhibitors of the ETC (Becker et al., 1999; Becker, 2004). The

mechanism of ROS production during ischaemia has been

suggested to depend on residual low oxygen levels in the

presence of a reduced ETC (Vanden Hoek et al., 1997). Thus,

the inhibition of ROS production during the ischaemic

phase as well as during the reperfusion phase is desirable and

it is considered that antioxidant therapy could benefit from

mitochondrial targeting strategies. First, a mitochondrial-

targeted antioxidant approach would prevent the potential

antioxidant-induced deregulation of redox signalling path-

ways in the cytosol. Second, mitochondrial targeting would

allow the antioxidant treatment to be precisely timed to

coincide with the ‘window’ of ROS production, for example,

the mitochondrial-targeted antioxidant should be most

effective when administered during the ischaemic phase of

the IR injury, that is, when mitochondria are the source of

the increased ROS. In addition to the increased calcium

levels and ROS production that occurs during IR injury, the

‘reperfusion phase’ of the tissue injury is associated with

activation of the MPT. This occurs as a result of mitochon-

drial calcium loading, NADPH oxidation, decrease in

adenine nucleotide levels and an increase in pH (Halestrap,

2004). These conditions favour activation of the MPT that

leads to depolarization of the Dcm, uncoupling of OX-PHOS

and decreased mitochondrial energy production. In an

attempt to maintain the Dcm, the F1F0ATPase reverses

hydrolysing ATP and contributing to the further decline in

ATP levels with loss of metabolic homeostasis, activation of

enzymes and cell necrosis. If the MPT is activated together

with proapoptotic Bax, cytochrome c can be released from

the mitochondrial intermembrane space and lead to the

induction of apoptosis (Halestrap et al., 2004). Protective

strategies to inhibit the MPT may provide protection

from IR-mediated cardiac injury and stroke and include:

(1) inhibition of the MPT with CsA; (2) inhibition of mitochon-

drial calcium loading by blocking the calcium uniporter with

ruthenium analogues such as ruthenium red or ruthenium

360 (Matlib et al., 1998; Zhang and Armstrong, 2007); and

(3) inhibition of ROS production using mitochondrial-targeted

antioxidants such as MitoQ. Problems with the nonspecifi-

city of CsA could be potentially avoided by using vesicular

systems such as DQAsomes to transport directly the drug to

the mitochondrial compartment which would prevent

the additional undesirable effects on the heart through
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inhibition of calcineurin-mediated processes (Halestrap

et al., 2004). Also, the drawback with CsA could be avoided

by using CsA analogues that do not modulate calcineurin

such as 4-methyl-val-CsA or by the use of alternative MPT

inhibitors such as sangliferin (Halestrap et al., 2004). Because

CsA only inhibits the MPT over a narrow concentration

range, direct mitochondrial targeting would facilitate the

delivery of precisely regulated doses of CsA to the mitochon-

drial compartment (Halestrap et al., 2004). Alternatively, it

may be possible to inhibit CyP-D using antisense or

interference RNA strategies because it is CyP-D that trans-

duces MPT death signals. In this light, small-molecule

inhibitors of CyP-D might be used for the treatment of acute

MI and other ischaemic disorders. However, there remains

much to be resolved regarding CyP-D, because it may have a

crucial physiological role in the mitochondrial matrix in

addition to its role in the MPT. Indeed, much effort is going

into screening and identifying new MPT inhibitors for

therapeutic gain. For example, the compound Ro 68–3400

was recently identified in a screen for MPT inhibitors and

was initially thought to target specifically VDAC1 although

it was later found that VDAC1 was not the target protein of

the drug (Krauskopf et al., 2006). As with the case of the ANT

and CyP-D, definitive evidence of a structural role for VDAC

in the MPT is currently lacking, although future genetic work

may provide the required information to more precisely

classify its importance in the MPT as it has been recently

done for CyP-D (Baines et al., 2005; Nakagawa et al., 2005).

Mitochondrial drug targeting to trigger apoptosis in cancer therapy

Mitochondria regulate cell death by apoptosis that has led to

the development of mitochondria-directed drugs designed to

trigger apoptosis in cancer cells. Although many conven-

tional anticancer agents including doxorubicin, cisplatin

and paclitaxel induce cell death by indirectly targeting

mitochondria and activating apoptosis through signalling

pathways such as p53, and Fas/FasL (Costantini et al., 2000),

other agents directly target the membranes of mitochondria

to bring about mitochondrial permeabilization and cell

death (Armstrong, 2006).

In general, the aim of activating the Bcl-2 family proteins

is to target them to the mitochondrial outer membrane

where they induce membrane permeability and release

apoptosis activating proteins into the cytosol. Because Bcl-2 is

overexpressed in many solid organ tumours and increases

the resistance to cell death by conventional cancer therapies,

it has been the focus of intense research to design and

develop Bcl-2 targeting strategies aimed at blocking its anti-

apoptotic action (Miyashita and Reed, 1992). In vitro assays

have shown that Bcl-2 does not protect against

GSH-dependent loss of Dcm and cell death induced by the

thiol-crosslinking agent diazenedicarboxylic acid bis

5N,N-dimethylamide or the GSH-depleting agent diethyl-

maleate (Zamzami et al., 1998; Armstrong and Jones, 2002).

Thus, a potential way to overcome the anti-apoptotic action

of Bcl-2 may be to develop drugs designed to deplete

mitochondrial GSH levels and induce mitochondrial protein

oxidation and cell death (Armstrong, 2006). A second

strategy to overcome Bcl-2-mediated resistance to cell death

has been to use ligands of the mitochondrial BR. For

example, the BR ligand PK11195 has been found to reverse

the resistance to apoptosis in cells that overexpress Bcl-2 by

activating the MPT (Hirsch et al., 1998). Other approaches

designed to block the action of Bcl-2 have included the use of

antisense technology to inhibit A1 and Bcl-XL expression

(Ackermann et al., 1999; Marcucci et al., 2005), whereas an

alternative approach to inhibit Bcl-2 and activate apoptosis

has been to target proapoptotic Bcl-2 proteins and peptides

to mitochondria. For example, gene therapy employing

adenoviral Bax-delivering vectors has been successful in

activating mitochondrial apoptosis (Kagawa et al., 2000;

Xiang et al., 2000; Li et al., 2001). A similar strategy used to

induce apoptosis was taken by Walensky et al. (2004), who

generated stable BH3 peptidomimetics designed to block the

action of Bcl-2 and activate Bax and Bak. Li et al. (2004)

developed mimetics of the protein Smac/DIABLO to block

the action of the inhibitor of apoptosis protein. Although

these approaches predominantly target the mitochondrial

outer membrane, other agents directly target mitochondrial

inner membrane including arsenite, lonidamine (LND),

betulinic acid and 6[3-adamantyl-4-hydroxyphenyl]-2-

naphthalene carboxylic acid (CD437) (Costantini et al.,

2000; Armstrong, 2006). Arsenite induces cell death by a

mechanism that involves modulation of mitochondrial

protein thiol redox status (Zhu et al., 1999), whereas LND

inhibits mitochondrial oxygen consumption blocking en-

ergy metabolism (Stryker and Gerweck, 1988). CD437 is a

synthetic retinoic acid receptor agonist that has been shown

to induce cell death by inducing the MPT (Marchetti et al.,

1999) and betulinic acid, a pentacyclic triterpene, has been

found to induce MPT and apoptosis via a direct effect on

mitochondria in intact cells and in cell-free systems

(Costantini et al., 2000). Other mitochondrial membrane

targeting strategies have exploited the increased Dcm of

tumour cells to target DLC including rhodamine and

cyanine dyes to the mitochondrial matrix (Oseroff et al.,

1986; Chen, 1988; Sun et al., 1994; Koya et al., 1996). The use

of toxic peptides, such as mastoparan, which target the

cm and specific agents that deplete mtDNA has also

been proposed as mitochondria-specific anticancer agents

(Armstrong, 2006). Mitochondrial DQAsome-mediated delivery

systems and the protein import pathway have been success-

fully used to target proapoptotic drugs such as paclitaxel to

mitochondria (Weissig et al., 2004). In addition to direct and

indirect targeting of specific mitochondrial membranes,

certain drugs activate apoptotic pathways that involve both

membranes. THG induces ER stress and apoptosis in cancer

cells by targeting Bax to the outer membrane and activating

the MPT (Zhang and Armstrong, 2007). Thus, the number of

mitochondrial apoptotic targeting strategies used for cancer

therapy are increasing and are likely to become more

numerous in the future as research identifies new drugs

and target molecules within the organelle.

Mitochondrial targeting of the ETC and the UCP to treat diabetes

and obesity

It is, perhaps, not surprising that mitochondria are impor-

tant in diabetes given their crucial role in the regulation of
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metabolism. In the developed world, increased access to food

together with a sedentary lifestyle is leading to increased

obesity and a ‘pandemic’ in diabetes (Naser et al., 2006;

Smyth and Heron, 2006). This suggests that increased

research into metabolic diseases is warranted to discover

potential new drugs and targets designed to modulate

metabolism for therapeutic gain. In this light, recent

research into the causes of reduced insulin secretion in

diabetes has underscored the role of increased levels of

mitochondrial ROS and the UCP in this disease (Brownlee,

2005; Lowell and Shulman, 2005). For example, the exposure

of pancreatic islet beta cells to increased levels of glucose has

been shown to (1) reduce insulin gene expression due to loss

of transcription factors PDX-1 and MafA (Robertson, 2004);

(2) reduce insulin secretion via ROS-mediated activation of

the UCP and decrease in ATP levels (Krauss et al., 2003); and

(3) reduce numbers of functional beta cells due to increased

apoptosis (Federici et al., 2001). These three events, often

coupled with increased insulin resistance in adipose tissue

and muscle, lead to a state of chronic hyperglycaemia and

long-term microvascular pathologies such as retinopathy,

nephropathy and neurological damage (Brownlee, 2005). At

the molecular level, hyperglycaemia increases mitochondrial

ROS production and activates key biochemical pathways

including: (1) the polyol and hexosamine pathways; (2) the

protein kinase C pathway; and (3) the formation of advanced

glycation end products that are considered to play a key role

in diabetic microvascular pathology (Nishikawa et al., 2000;

Du et al., 2003; Brownlee, 2005). The principal mitochon-

drial ROS involved has been proposed to be mitochondrial

O2
K� because the overexpression of either MnSOD or UCP1

was shown to block these pathways (Nishikawa et al., 2000).

The UCP are members of a family of mitochondrial carrier

proteins that regulate proton leak across the mitochondrial

inner membrane and, in doing so, dissipate the mitochon-

drial proton gradient (DmHþ ) thereby reducing the amount

of ATP generated by OX-PHOS (Echtay et al., 2002). UCP1 is

involved in the regulation of nonshivering thermogenesis,

whereas UCP2 and UCP3 are more ubiquitously expressed

and may play a role in the regulation of ROS production

(Schrauwen and Hesselink, 2002). Because the overexpres-

sion of UCP1 was shown to reduce the glucose-induced

DmHþ and O2
K� production in endothelial cells, UCPs are

considered potential mitochondrial targets for intervention

in diabetes (Nishikawa et al., 2000). However, it should be

noted that none of the UCPs, with the exception of UCP1,

have ever been actually shown to uncouple mitochondria or

to regulate mitochondrial ROS production. Their functions

are currently unknown despite intense research into this

aspect of mitochondrial biology (Starkov, 2006). Also, there

are important factors to consider regarding modulation of

UCP function for therapeutic gain. For example, while the

overexpression of UCP might be expected to reduce ROS

levels and diabetic signalling in the endothelium it could

reduce ATP production in beta cells and, thereby, inhibit

normal insulin secretion that depends on ATP levels. This

suggests that modulation of UCP function for therapeutic

gain would have to be done in a highly tissue-specific

manner (Mattiasson and Sullivan, 2006). UCPs are also

candidate genes for the treatment of obesity because

(1) chemical uncoupling of the ETC reduces body adiposity

and (2) animal studies have shown that the overexpression

of different UCP homologues causes mice to be lean and

resistant to diet-induced obesity (Dalgaard and Pedersen, 2001;

Kopecky et al., 2001; Krauss et al., 2003). Advances in our

knowledge of the regulation of UCP function together with the

development of more efficient drugs designed to modulate

mitochondrial ROS production will be expected to expedite

progress in health and disease management in this area.

Conclusions

Mitochondrial medicine is a unique discipline that is

evolving owing to advances in technology and in our

knowledge of the role of the mitochondrion in disease. The

unique structural and functional characteristics of mito-

chondria enable selective intracellular targeting of drugs

designed to modulate mitochondrial function for therapeu-

tic gain. However, these ideas are still largely in the

developmental stage and currently there are a number of

caveats associated with mitochondrial drug targeting which

include: (1) a lack of knowledge of the potential long-term

toxic effects of using these compounds in animals; and

(2) a current lack of efficient methods to regulate drug delivery

to the tissue of interest. Future developments in mitochondria-

specific drug delivery technologies will be expected to solve

these problems and to promote the development of mitochon-

drial medicine for improved disease treatment.
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